
BYO IDP in Entra ID

Persisting and bypassing MFA with OIDC based protocols



About me

• Dirk-jan Mollema

• Lives in The Netherlands

• Hacker / Researcher / Founder / Trainer @ Outsider Security

• Talks at Black Hat / Def Con / BlueHat / Troopers / x33fcon

• Author of several Active Directory and Entra ID tools
• mitm6
• Ldapdomaindump
• adidnsdump
• BloodHound.py
• ntlmrelayx / krbrelayx
• ROADtools

Socials 
Blog/talks: dirkjanm.io
Twitter/X: @_dirkjan
BlueSky: @dirkjanm.io



Talk agenda

• What is OIDC and why should we care

• OIDC and federated credentials

• Entra External Authentication Methods

• Conditional Access custom controls

• Detection opportunities and challenges



Why OpenID connect

• Most of the time we want to have access tokens / bearer tokens

• They give us access to data

• Focus often on Microsoft 365 native apps

• Little interest in how the actual validation of these tokens works



Why OpenID connect

• Whereas access tokens provide authorization for resources, ID 
tokens provide authentication to clients

• Web and native apps can use ID tokens to authenticate a user

• Used extensively for SSO with Entra ID



OIDC technical bits

• Based on OAuth2

• The Authorization Server (often Entra ID) will issue an ID token 
during the familiar OAuth flows

• ID token requested by openid scope

• Main difference with access token:
• Access token is intended for the Resource Provider (upstream API such as 

Microsoft Graph) to authorize the user

• ID token is intended for the client to authenticate the user



Federated credentials



Application credentials



Application credentials

• Client secrets or passwords
• Use the client secret itself to auth

• Certificates + private key
• Use signed assertion to authenticate

• Federated Credentials
• Allow another IDP to authenticate?



Federated credentials

• Federation = establishing a trust relationship between an 
application (Service Provider or Resource Provider) and an Identity 
Provider so that the IdP can authenticate users to your app.

• Federation = making something else responsible for your 
authentication and trusting they do their job properly.

• Best known example: AD FS

• Essentially trusting another IdP (not Entra ID) to issue tokens so we 
can get tokens from the IdP we want (Entra ID)



Configuring federated credentials



Custom providers



Federated credentials auth

• Uses OAuth2 client credentials flow with signed assertion



Federated credentials protocol

Entra ID

Other Identity Provider

/.well-known/openid-configuration 

Client credentials with federated assertion

OpenID connect discovery

Fetch public keys
{jwks_uri} URL from discovery

Validate assertion

Issue token



roadoidc

• Minimalistic OIDC implementation

• Can be hosted on Azure App services or Azure Blob storage
• Azure Blob storage hosts static files, suitable for federated credentials but 

not for advanced scenarios we cover later

• Tokens can be requested with roadtx



Authenticating with federated creds



What’s the point

• Mainly OPSEC
• Adding client secrets and certificates to apps is a well-known technique and 

included in many detection playbooks.

• Federated credentials are less well known by defenders and may not be 
spotted.

Adding client secret

Adding federated credentials



Federated credentials in Azure

• Federated credentials exist on User Managed Identities

• Normally, managed identities can only be accessed via resources 
they are linked to
• Via Metadata endpoint on Virtual Machines, Logic Apps, etc

• Gives out only access tokens, no long-term persistence without resource 
access

• Federated credentials allow for persistent access
• Permanent credentials that can be used at any time

• Can be used outside of Azure

More details: https://dirkjanm.io/persisting-with-federated-credentials-entra-apps-managed-identities/



Federated credentials on MI



OIDC in External Auth Methods



External Authentication Methods

• New-ish feature (May 2024) that makes it possible to use external 
MFA providers.

• Alternative for Entra ID native MFA.

• Uses OpenID Connect to trust authentication claims from IdPs

Reference: https://techcommunity.microsoft.com/blog/microsoft-entra-blog/public-preview-external-authentication-methods-in-microsoft-entra-id/4078808



Test setup

• Shout-out to DUO for
free tier!



Test setup – configure EAM



EAM and OIDC

Entra ID

Other Identity Provider

/.well-known/openid-configuration 

Authenticate User
(first factor) OpenID connect discovery

Redirect to EAM IDP 
{authorization_endpoint} URL

Validate ID token

Authenticated

Perform security checks
Return to Entra ID

/common/federation/OAuth2ClaimsProvider

Fetch public keys
{jwks_uri} URL from discovery

Blue = Entra backend request
Red = User flow



EAM request



ID token signed by Entra ID



EAM return result



ID token signed by EAM IDP



Creating our own EAM

• Need to implement this protocol in roadoidc

• Instead of checking MFA, immediately redirect back to Entra ID with 
signed ID token, using roadoidc signing cert

• Does require roadoidc deployment to Azure App Services since this 
is no longer just based on static flows.



Roadoidc as EAM demo



One last hurdle

• We need to have an app in our tenant for the EAM:
• Must have IdP authorize URL as redirect URL registered

• Must have openid and profile permissions granted

• Solution:
• Create app in the tenant and grant consent (requires privileged role)

• Use existing app with these permissions and replace redirect URL on the fly 
client side.



Arbitrary MFA for all with EAM

• With roadoidc we can perform fake MFA for any user in scope of the 
authentication method.

• If we modify the Authentication Methods Policies we can comply 
with MFA for anyone in scope.

• Does require Global Admin or the MS Graph permission 
Policy.ReadWrite.AuthenticationMethod to configure, so more of a 
post-exploitation technique.

• EAM does not yet support Auth Strength (even though auth strength 
is indicated in the protocol)



Add EAM method for victims



What if tenant is using EAM?

• If the tenant is using EAM legitimately, we could bypass MFA AD FS 
style if we can obtain the signing cert and key from the EAM IdP.

• Dumping the cert + key from a third party IdP maybe a bit far 
fetched.

• What if we can add our own keys?



Theoretical OIDC backdoor

Entra ID

roadoidc

/.well-known/openid-configuration 

OpenID connect discovery

Redirect to EAM IDP 
{authorization_endpoint} URL

Pretend everything is fine
Return to Entra ID

Fetch public keys
{jwks_uri} URL from discovery



Problems with this backdoor

• User is redirected to untrusted domain.

• We can fake MFA but that would affect the security of the victim 
tenant.

• Could redirect to the real EAM IdP but then issuer would not match.



Theoretical OIDC backdoor 2

Entra ID

roadoidc

/.well-known/openid-configuration
Issuer: Real EAM IDP
Auth endpoint: Real EAM IDP

Redirect to EAM IDP 

Return to Entra ID

{jwks_uri} from discovery
Keys: roadoidc keys + real keys

Real EAM IDP

{auth_endpoint} URL

Security checks

OpenID connect discovery

Fetch public keys Fetch real keys
{jwks_uri}



Backdoor 2 – attacker flow

Entra ID

roadoidc

/.well-known/openid-configuration
Issuer: Real EAM IDP
Auth endpoint: Real EAM IDP

Modify redirect to fake IDP

Return to Entra ID

{jwks_uri} from discovery
Keys: roadoidc keys + real keys

Real EAM IDP

{auth_endpoint} URL

OpenID connect discovery

Fetch public keys Fetch real keys
{jwks_uri}

Pretend everything is fine



Potential problems with this backdoor

• This is never going to work.

• Why would it be allowed to host the discovery document on a 
different domain than the issuer.

• Why would it be allowed to host the keys on a different domain than 
the issuer.



Actual problem with this backdoor

• It does work

• Because Microsoft



In practice





Demo



Demo



Recap

• Discovery URL we configure:
• https://roadoidcapp.azurewebsites.net/duo/.well-known/openid-configuration

• Discovery document gives issuer (for DUO):
• https://eu-west.azureauth.duosecurity.com

• Discovery document keys URL:
• https://roadoidcapp.azurewebsites.net/duo/keys 
• Gives both the backdoor keys + the real keys fetched from DUO

• Discovery document gives the real authorization page from DUO
• Real users get redirected to DUO and MFA keeps working as it should
• Attacker can intercept the redirect and send it to roadoidc to bypass DUO
• Only Entra ID communicates with roadoidc (so no domain in EDR/FW logs)

https://roadoidcapp.azurewebsites.net/duo/.well-known/openid-configuration
https://eu-west.azureauth.duosecurity.com/
https://roadoidcapp.azurewebsites.net/duo/keys


Let’s read the specs

Ref: https://openid.net/specs/openid-connect-discovery-1_0.html#ProviderConfigurationValidation



Let’s read Microsoft’s own docs



Real EAM or not?





CA Custom Controls



Custom controls in Conditional Access

• Essentially the predecessor of EAM

• Been around for a few year, announced in 2020 that it would not 
become GA

• Companies still use it

• Until EAM was around the only way to use external MFA providers



Custom controls



Custom control configuration json



Custom controls and OIDC

Entra ID

Other Identity Provider

/.well-known/openid-configuration 

Authenticate User
(first factor) OpenID connect discovery

Redirect to cust control IDP 
{authorization_endpoint} URL

Validate ID token

Authenticated

Perform security checks
Return to Entra ID

/common/federation/OAuth2ClaimsProvider

Fetch public keys
{jwks_uri} URL from discovery

Blue = Entra backend request
Red = User flow



Custom controls and OIDC

• Implementation is identical between EAM and Custom Controls.

• Can perform the exact same attacks: modify the Custom Control 
discovery URL and then inject backdoor keys.

• No need for app registration and redirect URL check in this case.

• Slightly different response is required to make it work.



Disclosure process



Disclosure process

• Sent two reports to MSRC
• One describing the bug in Custom Controls
• One describing the bug in EAM

• The bug in EAM was closed as a duplicate

• The bug in Custom Controls was closed as “not a vulnerability” since 
“admins are free to change the URL at any time and you need privileged 
access to do this”.

• They also pointed out that Custom Controls will be replaced by EAM 
which is “better”.



What could be improved

• Implement the OAuth mandatory security checks

• Don’t use the discovery URL pattern but use the issuer and then do 
the discovery based on the .well-known/openid-configuration suffix.
• This is what is used in federated credentials on apps, which is why this 

attack doesn’t work there.



Attack flow and detection



Modifying or adding EAM

• Can be done in the Azure portal / Entra Admin portal

• Both will use the Microsoft Graph endpoint 
/authenticationMethodsPolicy/authenticationMethodConfigurations/

• Quick detection for policy modifications (assuming you have Graph 
Activity logs)

• Also recorded in the Entra audit logs, where we can get the actual 
changes

MicrosoftGraphActivityLogs
| where RequestUri contains "authenticationMethodsPolicy"
| where RequestMethod == "PATCH"



Detection: EAM modification





Alternative approach

• Use Azure AD Graph “legacy” API https://graph.windows.net

• Modify the “policy” object over an internal API version

• No useful logging ☺ / 

https://graph.windows.net/


Modifying Custom Controls

• Uses https://main.iam.ad.ext.azure.com/api/ClaimProviders 
endpoint.

• No “public” API to perform modification.

• Used to not generate any useful logging when I reported it

• Is now recorded in the audit log properly

• Modifying Custom Controls / CA policies via internal API was 
blocked a few years ago

https://main.iam.ad.ext.azure.com/api/ClaimProviders


Custom Control modification



Modified DiscoveryUrl





Conclusions



Conclusions

• Federated credentials provide new opportunities for taking control 
and persisting on applications and managed identities – new things 
to monitor for.

• EAM can be configured as MFA method for a broad scope, helping in 
post-exploitation scenarios.

• If you actually use EAM or Custom Controls in CA, be on the lookout 
for “backdoor keys”, which only works because Microsoft refuses to 
actually implement mandatory OAuth2 security checks.

• New roadoidc release will make this feature available soon.



BYO IDP in Entra ID

Persisting and bypassing MFA with OIDC based protocols


	Slide 1: BYO IDP in Entra ID
	Slide 2: About me
	Slide 3: Talk agenda
	Slide 4: Why OpenID connect
	Slide 5: Why OpenID connect
	Slide 6: OIDC technical bits
	Slide 7: Federated credentials
	Slide 8: Application credentials
	Slide 9: Application credentials
	Slide 10: Federated credentials
	Slide 11: Configuring federated credentials
	Slide 12: Custom providers
	Slide 13: Federated credentials auth
	Slide 14: Federated credentials protocol
	Slide 15: roadoidc
	Slide 16: Authenticating with federated creds
	Slide 17: What’s the point
	Slide 18: Federated credentials in Azure
	Slide 19: Federated credentials on MI
	Slide 20: OIDC in External Auth Methods
	Slide 21: External Authentication Methods
	Slide 22: Test setup
	Slide 23: Test setup – configure EAM
	Slide 24: EAM and OIDC
	Slide 25: EAM request
	Slide 26: ID token signed by Entra ID
	Slide 29: EAM return result
	Slide 30: ID token signed by EAM IDP
	Slide 33: Creating our own EAM
	Slide 34: Roadoidc as EAM demo
	Slide 35: One last hurdle
	Slide 36: Arbitrary MFA for all with EAM
	Slide 37: Add EAM method for victims
	Slide 38: What if tenant is using EAM?
	Slide 39: Theoretical OIDC backdoor
	Slide 40: Problems with this backdoor
	Slide 41: Theoretical OIDC backdoor 2
	Slide 42: Backdoor 2 – attacker flow
	Slide 43: Potential problems with this backdoor
	Slide 44: Actual problem with this backdoor
	Slide 45: In practice
	Slide 46
	Slide 47: Demo
	Slide 48: Demo
	Slide 49: Recap
	Slide 50: Let’s read the specs
	Slide 51: Let’s read Microsoft’s own docs
	Slide 52: Real EAM or not?
	Slide 53
	Slide 54: CA Custom Controls
	Slide 55: Custom controls in Conditional Access
	Slide 56: Custom controls
	Slide 57: Custom control configuration json
	Slide 58: Custom controls and OIDC
	Slide 59: Custom controls and OIDC
	Slide 60: Disclosure process
	Slide 61: Disclosure process
	Slide 62: What could be improved
	Slide 63: Attack flow and detection
	Slide 64: Modifying or adding EAM
	Slide 65: Detection: EAM modification
	Slide 66
	Slide 67: Alternative approach
	Slide 68: Modifying Custom Controls
	Slide 69: Custom Control modification
	Slide 70: Modified DiscoveryUrl
	Slide 71
	Slide 72: Conclusions
	Slide 73: Conclusions
	Slide 74: BYO IDP in Entra ID

