
1



A YEAR OF HACKING AZURE AD

DIRK-JAN MOLLEMA / @_dirkjan

I’m in your cloud…

2



- Lives in The Netherlands

- Hacker / Red Teamer / Researcher @ Fox-IT since 2016

- Author of several Active Directory tools
- Mitm6
- ldapdomaindump
- BloodHound.py
- aclpwn.py
- Co-author of ntlmrelayx

- One of the MSRC Most Valuable Security Researchers 2018/2019

- Blogs on dirkjanm.io
- PrivExchange

- Tweets stuff on @_dirkjan

Whoami



• Azure AD terminology – Portal vs API

• “Reversing” Azure AD via undocumented APIs

• Digging into service principals

• Linking up cloud and on-premise

This talk



• Not related to on-premise Active Directory

• Source of authentication for Office 365, Azure Resource Manager, 

and anything else you integrate with it.

Azure AD



• Users

• Devices

• Applications

Azure AD Principals



• Examples:
• Microsoft Graph

• Azure Multi-Factor Auth Client

• Azure Portal

• Office 365 portal

• Azure ATP

• A default Office 365 Azure AD has about 200 service principals

(read: applications)

Everything is an application



Applications and multitenancy – your apps



Applications and multitenancy – third party apps



Applications and multitenancy – Microsoft apps



• Two types of privileges:

• Delegated permissions
• Require signed-in user present to utilize

• Application permissions
• Are assigned to the application, which can use them at any time

• These privileges are assigned to the service principal

Application privileges



• Every application defines permissions

• Can be granted to Service Principals

• Commonly used:

• Microsoft Graph permissions

• Azure AD Graph permissions

Permissions model



Example: Application permissions



Service principal permissions



How permissions actually work

API definition Portal terminology

Every application defines:

- OAuth2 permissions

- Application roles

App registration:

- Delegated permissions

- Application permissions

An application requires:

- Resource access

App registration:

- API permissions

A service principal has:

- OAuth2 permission grants

- Application roles

An enterprise application has:

- Delegated permissions

- Application permissions



• Normal flow:

• Define required permissions in application

• Approve permissions

• Alternative flow:

• Assign a service principal to a role in MS Graph/AAD Graph 

directly

Hiding in plain sight



Application view



Service Principal view



• No way to tell from portal or API which permissions they have

The exception: Microsoft applications…



JWT



• Some admin roles allow managing all applications
• Global Administrator
• (Cloud) Application Administrator

• Including assigning credentials

• Possibility for backdooring Azure AD
• No MFA for Service Principals

• Possible to escalate privileges
• If you control an application with more privileges than you

• Default applications with more permissions than Application Administrator

Why does this matter?



Application name Access

Microsoft Forms Sites.ReadWrite.All

Microsoft Forms Files.ReadWrite.All

Microsoft Cloud App Security Sites.ReadWrite.All

Microsoft Cloud App Security Sites.FullControl.All

Microsoft Cloud App Security Files.ReadWrite.All

Microsoft Cloud App Security Group.ReadWrite.All

Microsoft Cloud App Security User.ReadWrite.All

Microsoft Cloud App Security IdentityRiskyUser.ReadWrite.All

Microsoft Teams Sites.ReadWrite.All

Microsoft StaffHub Directory.ReadWrite.All

Microsoft StaffHub Group.ReadWrite.All

Microsoft.Azure.SyncFabric Group.ReadWrite.All

Microsoft Teams Services Sites.ReadWrite.All

Microsoft Teams Services Group.ReadWrite.All

Office 365 Exchange Online Group.ReadWrite.All

Microsoft Office 365 Portal User.ReadWrite.All

Microsoft Office 365 Portal AuditLog.Read.All

Azure AD Identity Governance Insights AuditLog.Read.All

Kaizala Sync Service Group.ReadWrite.All

Default app permissions

22https://dirkjanm.io/azure-ad-privilege-escalation-application-admin/



• Log shows actions were performed by application

Logging?



Application API Permissions

Microsoft.MileIQ https://graph.windows.net/ user_impersonation

SharePoint Online Client Extensibility https://graph.windows.net/ user_impersonation

Microsoft Teams - Device Admin 

Agent https://graph.windows.net/ user_impersonation

Microsoft Stream Mobile Native https://graph.windows.net/ user_impersonation

SharePoint Online Client https://graph.windows.net/ user_impersonation

Outlook Online Add-in App https://graph.windows.net/ user_impersonation

Microsoft.MileIQ https://graph.microsoft.com/ user_impersonation

SharePoint Online Client Extensibility https://graph.microsoft.com/ user_impersonation

Outlook Online Add-in App https://graph.microsoft.com/ user_impersonation

OAuth2 permissions – password grant

24



• OAuth2 password grant does not require verification

• Any APP ID can be used

• Interact with API’s with full user permissions

• Run AAD PowerShell without the PS App ID

• Makes defender’s life harder

Abusing password grant permissions

25



26



• At least nine depending on how many apps have impersonate privs

How many different PowerShell usage records?

27

9



28

“Reversing” Azure AD



• No low-level access to Azure AD backend

• No way to use traditional reversing to find out more

How does it actually work?

29



• Portal

• PowerShell modules

• API’s

Interacting with Azure AD



• Nice and shiny

• Offers (almost) all configuration options

• Does simplify concepts 

Portal



• Azure AD Graph

• Microsoft Graph

• Exchange Provisioning service

API’s



• All of them have limitations

• Unique features, yet deprecated

• Different authentication methods supported

• Different terminology

Which one to use?



Front-end vs backend (Azure AD)

34

Azure portal Azure portal API Internal API? Database?

? ?

Azure AD graph?

Microsoft graph?



Once upon a time in the Azure Portal

35



36



Front-end vs backend (Azure AD)

37

Azure portal Azure portal API Internal Azure AD graph API Database?

? ?

Attacker/researcher



Azure AD graph metadata – internal version

38

File size



Unannounced features…

39



More unannounced features (DPAPI)

40



Interesting things

41



42

Can be queried by any authenticated user



• Change “Mfa” control to “Allow”

• Invisible in portal

The Access Policy that wasn’t

43



• No details on properties

Logs

44



• Passes checks

Sign-in logs

45



• Details only available via undocumented API

• Impossible to see in the portal

• Not really visible in logs

• Attack possibilities:
• Exclude specific users
• Disable entire policy
• Change trusted networks

• Fixed in October 2019

Conditional access policies backdooring TL;DR

46



47

Digging into Service Principals



• Used for OAuth2 implicit grant (web)

• Whitelist of URLs

• Sends access token to URL in fragment (#)

ReplyUrls

48



• Non-https URL

• Portal refuses, API accepts

• Expired domain

• Relative URL

ReplyUrls don’ts

49



Demo

50



• Microsoft Teams Web Client
• Whitelisted http://dev.local

• Has read/write access to Email, SharePoint, OneDrive

• Allows for man/person in the middle attack

• Not possible to identify in logs (Reply URL is not logged)

• Fixed for new Office 365 tenants in September 2019, existing tenants in 
October 2019

• More details: https://dirkjanm.io/office-365-network-attacks-via-insecure-
reply-url/

Office 365 insecure Reply URLs

51



• Hidden property “appMetaData” – only visible in internal API

• Mostly for custom apps (Federated Certificate Storage)

• Only used for a few apps by default

• Interesting case “Device Registration Service”

appMetaData

52



53



• Property of service principal

• Can be edited by Application Administrator

Device settings

54



• Following principals have security identifiers

• Users

• Groups

• Roles

• Stored in “cloudSecurityIdentifier” property (internal API only)

Security Identifiers in Azure AD

55



• Application Administrator can add SIDs to policy in metadata

• Can be users/groups/roles

• New device joined? User gets added to Administrators group

• Rogue user is now admin on device

• Not yet fixed (by design)

Application Administrator to local Admin on devices

56



Portal doesn’t seem to like it…

57



58

Linking up Cloud an on-prem



• Application administrator is high-privilege cloud account

• Hopefully protected with MFA

• What about on-premise?

Exploiting the link with on-premise



• Tool that resides on-premise and syncs AD data to Azure AD

• Installed in both Password Hash Synchronization and ADFS 

scenario’s

Azure AD connect

Source: https://docs.microsoft.com/en-us/azure/active-

directory/hybrid/whatis-phs



• Possible to link new on-premise account to existing cloud-only 

account

• Anyone with user creation privileges on-premise could overwrite 

the password of (admin) accounts in the cloud

Previous vulnerability – Password Hash Sync

https://blog.fox-it.com/2019/06/06/syncing-yourself-to-global-administrator-in-azure-active-directory/



• If Password Hash Synchronization is in use, the Sync account can 

sync all password hashes

• Means it’s basically Domain Admin on-premise

• Both with PHS and ADFS sync account has high privileges in the 

cloud

• Cloud assets may extend beyond the AD Domain

Sync account privileges



• Adconnectdump: 3 ways to dump the password on-premises

• Technical explanation: see my Troopers presentation

Azure AD Connect password extraction

https://github.com/fox-it/adconnectdump



AD Sync account privileges in Azure AD





• Dump all on-premise password hashes (if PHS is enabled)

• Log in on the Azure portal (since it’s a user)

• Bypass conditional access policies for admin accounts

• Add credentials to service principals

• Modify service principals properties

• Modify/backdoor/remove conditional access policies (internal API)

Fun bad stuff to do with the Sync account



• RBAC roles can be assigned to service principals

• These can be managed by Application Administrators

• Also by the on-premise sync account

• High privilege applications might need an account

• Example: Terraform

• Service principals credentials can be assigned by these accounts

• Control over cloud resources

Azure Resource Manager RBAC



68

Conclusions



• Internal API version gives some insight into inner Azure AD 

workings

• Application Administrators are more powerful than you’d think

• Avoid using “global” Application Administrators, use 

scoped/custom roles instead

• Service Principals can be backdoored and abused

• Monitor for credential modification

• Review credentials/owners

• Review permissions and reply URLs for security issues

Conclusions / recommendations

69



• Enforce MFA for all admin accounts

• (Preferably for all accounts)

• Use conditional access policies

• Monitor modifications made

• The AD Sync account is highly privileged on-prem and in the cloud

• Treat it’s system as Tier 0

• Monitor for sign-ins from strange IP addresses

• Implement recommendations from Sean Metcalf and Mark 

Morowczynski’s talk “Attacking and Defending the Microsoft Cloud”

Conclusions / recommendations (2)

70


