
Breaking and fixing Azure AD device
identity security

Dirk-jan Mollema / @_dirkjan

About me

- Dirk-jan Mollema

- Lives in The Netherlands

- Hacker / Researcher / Founder / Trainer @ Outsider Security

- Given talks at Black Hat / Def Con / BlueHat / Troopers

- Author of several (Azure) Active Directory tools
- mitm6
- ldapdomaindump
- BloodHound.py
- aclpwn.py
- Co-author of ntlmrelayx
- ROADtools

- Blogs on dirkjanm.io

- Tweets stuff on @_dirkjan

• Azure AD and zero trust

• How device join works

• Primary Refresh Tokens, TPM and their protection

• Stealing PRTs and the Microsoft response

• Abusing device join scenario’s

Talk outline

• Azure AD
• Identity platform for Office 365, Azure Resource Manager, and other Azure

things

• Also identity platform for any first/third party app you want to integrate with it

• This is not about Azure infrastructure/VMs/etc

Terminology

Zero trust

Source: https://www.microsoft.com/en-ww/security/business/zero-trust

• Devices registered / joined to Azure AD

• Mobile (Android/iOS) or desktop OS (Windows 10/11, MacOS)

• Device identity exists as a device object in Azure AD

• Can be managed by Intune (or third-party MDM)

Device identity

Device join and compliancy

• Device joined to Azure AD

• Managed by MDM (Intune)

• Applies policies to devices

• Applied policies make devices compliant

• Conditional Access used to restrict access to resources to compliant
devices

Locking down trusted devices

• Restrict Intune enrollment to only corporate devices
• Block BYOD devices

Research scenario

• Windows 10 devices

• Autopilot in use for hardware matching

• Personal devices restricted in Intune

• Device compliancy required in Conditional Access

• Hardware protection of secrets via TPM

Research questions

• How are devices joined to Azure AD?

• How are secrets protected by hardware?

• Can we extract the secrets or bypass the need for them?

• Can we bypass the compliant device requirement?

Device join flow – Windows 10

• Two keypairs are generated
• Device key

• Transport key

• Public keys are sent to Azure AD

• Private keys remain on device

Technical flow

Registration request

Access token for device reg service

Certificate Sign Request for device cert

Public RSA key for transport

Device properties

0 = AAD join

Device Ticket (can be left out)

Private keys stored in Trusted Platform Module
TPM

Key operation

Result

OS

• User signs in using Azure AD username + password

• Is passed to LSASS CloudAP, which requests a Primary Refresh Token

After device join – AAD sign-in

• Challenge is requested from online service

Primary Refresh Token flow (1)

• Nonce is returned

PRT flow (2)

• Signed data is sent to the server

PRT flow (3)

Signed data content

PRT flow (4)

Incorrect, actually 90 days

PRT

Encrypted session key with transport key

TPM and storage keys

• TPM has root storage key in hardware

• Storage keys are stored on disk encrypted with storage root key

• Device transport key is a storage key

• Session key is issued by Azure AD encrypted with public key of
transport key

• Can only be used by loading the storage key (transport key) in the
TPM

• Device cert private key, transport key and session key are tied to the
TPM

• Possible to use from the OS, but not possible to extract from TPM
(even as SYSTEM)

• Issued PRT is used for Single Sign On to Azure AD resources

To summarize – sign-up flow with TPM

Abusing PRTs from the endpoint

Local Primary Refresh Tokens attacks

• As regular user (or malware running in user session)
• Request PRT usage by asking LSASS for SSO data

• As Administrator / SYSTEM
• Steal PRT if not protected by TPM

• Interact with PRT keys in LSASS using crypto APIs

How Windows uses PRTs

• Native apps:
• Request tokens from Web Account Manager (token broker)

• WAM passes request to LSASS, which asks for tokens using signed PRT
assertion

• Browser based (web) flows:
• PRT “cookie” used as header to authenticate requests to Azure AD login pages

• Any app in the user session can request Single Sign On (SSO) data

• Can be used to sign in to any Azure AD connected app or website

• References:
• RPC Approach (by Lee Christensen): https://posts.specterops.io/requesting-

azure-ad-request-tokens-on-azure-ad-joined-machines-for-browser-sso-
2b0409caad30

• Calling browsercore native component with ROADtoken:
https://dirkjanm.io/abusing-azure-ad-sso-with-the-primary-refresh-token/

Using PRTs for SSO from user sessions

• Research in combination with Benjamin Delpy (@gentilkiwi)

• Built a combination of Mimikatz and ROADtools to obtain and use the
PRT

Stealing PRTs as admin

PRT cookie structure (JWT)

1. Random bytes called a “context” is generated

2. Using this context, a key is derived from the session key

3. This “derived key” is used to sign the PRT cookie

4. The PRT cookie (JWT) is used in Azure AD to sign in

PRT cookie signing flow – software only
Random bytes

(context)

PRT

Session key Derived key

PRT cookie
(JWT)

Nonce from
Azure AD

PRT cookie signing flow – with TPM

Random bytes
(context)

PRT

Session key

Derived key

PRT cookie
(JWT)

Nonce from
Azure AD

TPM

LSASS process

Mimikatz magic with TPM

Use derived key and context to recreate PRT
cookie

• If you’re admin on a device with a PRT, you can steal the PRT if it’s not
in TPM

• If it is in the TPM you can still acquire context/derived key
combinations which allow you to use the PRT without the device

• Longer version:
https://dirkjanm.io/digging-further-into-the-primary-refresh-token/

PRT as admin TL;DR

Microsoft’s response

• In the August 2021 Windows updates, patches were introduced which
changed this behavior.

• Also changed storage mechanism in LSASS, breaking Mimikatz
CloudAP functionality.

• A later mimikatz update resolved this issue, but key derivation only
possible using old mechanism

Updated PRT cookie structure (JWT)

Changes

• Previously a random context was used to derive a signing key

• Now the SHA256 hash of random context + JWT body is used

• Documented in MS-OAPXBC

Ref: https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-oapxbc/89dfb8d6-23b8-4963-8908-91b34340e367

PRT cookie signing flow – with TPM

Random bytes
(context)

PRT

Session key

Derived key

PRT cookie
(JWT)

Nonce from
Azure AD

TPM

LSASS process

JWT body

SHA256 hash

KDF context

Fix details

• Patched as CVE-2021-33781

• New method prevents pre-generation of context/derived key
combinations that could be used later, since the nonce is part of the
KDF function.

• Downgrade from kdf_ver2 prevented by storing the KDF version in the
PRT itself (assumed) at the moment it is first issued.

Abusing device join scenarios

• Need to be admin on the device

• Need to dump LSASS

• No longer possible when secrets are stored in TPM

• Device disabled = PRT disabled

PRT stealing attack downsides

• We know how to get our own Primary Refresh Token by registering a
device.

• We know how to get an access token from a user session by using
SSO.

• How about registering a new device with an SSO token?

Combining knowledge

• Initialize SSO flow

• Request token with PRT cookie

Registering with SSO

Register device

Note: this POC is now part of the roadtx device module

Obtain PRT using user password

Note: this POC is now part of the roadtx device module

Use PRT and session key to sign in

Sign in with PRT

• SSO token can be requested from user session without admin
privileges

• Access token contains MFA claim

• New device registered will also issue PRT with inherited MFA claim

• Only password (or SSO in case of AD FS) is required to get a PRT

• Free MFA upgrade!

New device registration attack summary

• Upside
• Is separate from the old device, so if old device is disabled our PRT will still

work.

• Downside
• Requires permissions to register devices (not always allowed)

• Does not mean the device will be allowed to enroll into Intune (for
compliancy)

New device upsides/downsides

Bypassing Intune restrictions

Device registration vs Intune registration

• Device registration process registers device in Azure AD

• Separate process to register device with Intune

• Restrictions on non-corporate devices in Intune still allow you to
register devices in Azure AD (this is controlled separately)
• If registration done from non-corporate device, it will actually get an error

from Intune and then delete the device from Azure AD.

• An Azure AD registered device will not gain you anything since Conditional
Access is set for compliant devices, not joined devices.

Azure AD registration observations

• Device with Autopilot pre-registration can register in Intune

• When the device is wiped and re-installed, the new device will
overwrite the old device object in Azure AD

• How does Azure AD know it is the same device?

Registration request

Access token for device reg service

Certificate Sign Request for device cert

Public RSA key for transport

Device properties

0 = AAD join

Device Ticket (can be left out)

Observations part 2

• Re-using the same “MSA-DDID” parameter between registrations will
overwrite the device.

• Seems to expire after a certain period of time.

• What is the MSA-DDID parameter?

Reversing the registration flow

• Registration flow itself is a web-based app

• Calls WinRT APIs (COM)

• Eventually spawns dllhost.exe with dsreg.dll for actual registration
logic.

Reversing the registration process

Device tickets

Device tickets

• Your device has it’s own Microsoft Account (MSA).

• Used when device specific authentication is needed.

• Tickets are cached in the HKCU (!) registry hive:
• HKCU\SOFTWARE\Microsoft\IdentityCRL\Immersive\production\Token\{GUID}

• Tickets are DPAPI encrypted, but with machine specific protection,
meaning any user on the machine can decrypt them.

Ticket enumeration POC

Requesting tickets

• Further reversing leads us to the exact WinRT API calls needed.

• App GUID for the registration:
• 98D5C072-656C-4720-AC21-B85E2ACBBE88

• Registration endpoint ID:
• service::enterpriseregistration.windows.net::MBI_SSL

Putting together a ticket request script

Obtaining a device ticket

Overwriting the current device

Device retains original properties

Attack summary

• Any user with a session on the device can request a device ticket,
which could be used to overwrite the device in Azure AD if it was
preregistered using Autopilot

• Overwrites the device in Azure AD and gives us a cert+private key that
is no longer protected with a TPM.

• No need to “steal” a PRT from TPM.

• No need for Administrative privileges at all.

Some bonus features

• Any user in the tenant can overwrite the device using the device
ticket.

• Device ticket stays valid after device wipe (for about 24 hours).

• The identity used to overwrite the device becomes the new device
owner, which means it can recover the BitLocker drive encryption
keys if these are stored in Azure AD (privesc to Administrator if user
has physical access).

• The original device keeps its link to Intune, and will keep reporting its
compliancy.

• Device retains its compliancy status.

Complete chain

• A few commands in a non-administrator session of the victim were
enough to:
• Request an SSO token to register a new device.
• Request a device ticket to overwrite the legitimate, compliant device.
• Gain access to:

• Persistent Primary Refresh Token for the victim user.
• Including MFA claim transferred from the SSO token.
• Compliant device claim from Intune to satisfy strict Conditional Access policies.

• Bypassing:
• MFA
• Hardware security of secrets (TPM)
• The need to dump LSASS or have Administrator privileges.

• Registering a device via SSO was reported to MSRC in December 2020

• Final fixes rolled out in September 2021

• Intermediate fixes also for specific platforms

• No longer possible to use SSO tokens for device registration

• Device overwriting via device ticket was reported in May 2021.

• Patched in May 2022 via Windows update and assigned CVE-2022-
30189

• Final server-side enforcements rolled out in February 2023

Disclosure timeline

yesterday

Fixed?

• Device registration method seems unchanged

• Still possible to overwrite a device in AAD with device ticket

• Compliancy status is removed on overwrite

• Old device was still linked to Intune, changes in compliancy status
were synced to the rogue device in Azure AD

• The last part was fixed yesterday night ☺

• Secrets in hardware were not efficiently protected.

• Possible to obtain a PRT by simply registering a new device.

• Low privilege user on the device could take over the device identity.

• Most of this is fixed if you patched your endpoints

• Some bypasses remain (but that is for another time)

Conclusion

All tools in the talk are based on the ROADtools framework/library

Open source at https://github.com/dirkjanm/ROADtools/

Breaking and fixing Azure AD device
identity security

Questions? Twitter: @_dirkjan / Mail: dirkjan@outsidersecurity.nl

	Slide 1: Breaking and fixing Azure AD device identity security
	Slide 2: About me
	Slide 3: Talk outline
	Slide 4: Terminology
	Slide 5: Zero trust
	Slide 6: Device identity
	Slide 7: Device join and compliancy
	Slide 8: Locking down trusted devices
	Slide 9: Research scenario
	Slide 10: Research questions
	Slide 11: Device join flow – Windows 10
	Slide 13: Technical flow
	Slide 14: Registration request
	Slide 15
	Slide 16
	Slide 17: Private keys stored in Trusted Platform Module
	Slide 18: After device join – AAD sign-in
	Slide 19: Primary Refresh Token flow (1)
	Slide 20: PRT flow (2)
	Slide 21: PRT flow (3)
	Slide 22: Signed data content
	Slide 23: PRT flow (4)
	Slide 24: TPM and storage keys
	Slide 25: To summarize – sign-up flow with TPM
	Slide 26: Abusing PRTs from the endpoint
	Slide 27: Local Primary Refresh Tokens attacks
	Slide 28: How Windows uses PRTs
	Slide 29: Using PRTs for SSO from user sessions
	Slide 32: Stealing PRTs as admin
	Slide 33: PRT cookie structure (JWT)
	Slide 34: PRT cookie signing flow – software only
	Slide 35: PRT cookie signing flow – with TPM
	Slide 36: Mimikatz magic with TPM
	Slide 37: Use derived key and context to recreate PRT cookie
	Slide 38: PRT as admin TL;DR
	Slide 39: Microsoft’s response
	Slide 40: Updated PRT cookie structure (JWT)
	Slide 45: Changes
	Slide 46: PRT cookie signing flow – with TPM
	Slide 47: Fix details
	Slide 48: Abusing device join scenarios
	Slide 49: PRT stealing attack downsides
	Slide 50: Combining knowledge
	Slide 51: Registering with SSO
	Slide 52: Register device
	Slide 53: Obtain PRT using user password
	Slide 54: Sign in with PRT
	Slide 55
	Slide 56: New device registration attack summary
	Slide 57: New device upsides/downsides
	Slide 58: Bypassing Intune restrictions
	Slide 59: Device registration vs Intune registration
	Slide 60: Azure AD registration observations
	Slide 61: Registration request
	Slide 62: Observations part 2
	Slide 63: Reversing the registration flow
	Slide 64: Reversing the registration process
	Slide 65: Device tickets
	Slide 66: Device tickets
	Slide 67: Ticket enumeration POC
	Slide 68: Requesting tickets
	Slide 69: Putting together a ticket request script
	Slide 70: Obtaining a device ticket
	Slide 71: Overwriting the current device
	Slide 72
	Slide 73: Device retains original properties
	Slide 74: Attack summary
	Slide 75: Some bonus features
	Slide 76: Complete chain
	Slide 77: Disclosure timeline
	Slide 78: Fixed?
	Slide 79: Conclusion
	Slide 80
	Slide 81: Breaking and fixing Azure AD device identity security

