
fox-it.com
1

Dirk-jan Mollema / @_dirkjan

Breaking Azure AD joined endpoints

in zero-trust environments

- Dirk-jan Mollema

- Lives in The Netherlands

- Hacker / Red Teamer / Researcher @ Fox-IT since 2016

- Author of several (Azure) Active Directory tools
- Mitm6
- ldapdomaindump
- BloodHound.py
- aclpwn.py
- Co-author of ntlmrelayx
- ROADtools

- Blogs on dirkjanm.io

- Tweets stuff on @_dirkjan

Whoami

• Azure AD and zero trust

• Device join and TPM security

• Interacting with Primary Refresh Tokens

• Registering devices the unofficial way

• Bonus: bypassing MFA as Intune admin

Talk outline

• Azure AD

• Identity platform for Office 365, Azure Resource Manager, and

other Azure things

• Also identity platform for any first/third party app you want to

integrate with it

• This is not about Azure infrastructure/VMs/etc

Terminology

4

Zero trust

Source: https://www.microsoft.com/en-ww/security/business/zero-trust

• Devices registered / joined to Azure AD

• Mobile (Android/iOS) or Windows 10 based (laptop/desktop)

• Device exists as an object in Azure AD

• Can be managed by Intune (or third-party MDM)

Device identity

Device join options

• Azure AD joined
• For corporate owned devices
• Azure AD is the primary authority
• Windows 10 only

• Azure AD registered
• For BYOD devices
• Supports both mobile (Android/iOS/Win Mobile) and desktop (Windows 10/MacOS)

• Hybrid join
• Joined to both on-prem AD and Azure AD
• Managed by on-prem AD (GPO’s)

Device join flow – Windows 10

Device join flow after setup

• Regular sign-in (with MFA prompt if that is enforced)

• Requests token for device registration service

• Final confirmation prompt

Flow in the background

• Two keypairs are generated

• Device key

• Transport key

• Public key is sent to Azure AD

• Private key remains on device

Technical flow

Registration request

Access token for device reg service

Certificate Sign Request for device cert

Public RSA key for transport

Device properties

0 = AAD join

Device Ticket (can be left out)

• Azure AD issues a certificate

• Device object is created in Azure AD

Technical flow(2)

• Separate (crypto)processor

• Either as physical chip or integrated in CPU (can be virtual)

• Secure storage area

• Required for Windows 11

Trusted Platform Module

Private keys are stored in TPM

TPM

Using keys stored in a TPM

TPM

• A TPM protects against:

• Key extraction from a powered down stolen device (if protected

by PIN)

• Extracting private material from the OS layer

• A TPM does not protect against:

• Sniffing the physical connection between the TPM and CPU

• Using cryptographic material in the TPM while the system is

running, from a process with SYSTEM rights

A few notes about TPMs

• User signs in using username + password

• Primary Refresh Token is issued

After device registration

• Challenge is requested from online service

Primary Refresh Token flow (1)

• Nonce is returned

PRT flow (2)

• Signed data is sent to the server

PRT flow (3)

Signed data content

PRT flow (4)

Incorrect, actually 90 days

PRT

Encrypted session key with transport key

• Device cert private key, transport key and session key are stored in

TPM

• Possible to use from the OS, but not possible to extract from TPM

(even as SYSTEM)

• Used for Single Sign On to Azure resources

To summarize – sign-up flow with TPM

Interacting with Primary refresh tokens

• Any app in the user session can request Single Sign On (SSO)

data

• Via RPC or helper applications (emulating Chrome)

• References:

• RPC Approach (by Lee Christensen):

https://posts.specterops.io/requesting-azure-ad-request-tokens-

on-azure-ad-joined-machines-for-browser-sso-2b0409caad30

• Pretend-to-be-Chrome Approach with ROADtoken:

https://dirkjanm.io/abusing-azure-ad-sso-with-the-primary-refresh-

token/

Primary Refresh Token SSO

• Initialize flow on attacker host

• Request SSO token on victim host

ROADtoken

• Use PRT cookie to authenticate, get token

• Token claims:

PRT Auth

• More research in combination with Benjamin Delpy (@gentilkiwi)

• Built a combination of Mimikatz and ROADtools to obtain and use

the PRT

PRT as admin

Mimikatz magic

Monitoring crypto calls in API Monitor

1. Random bytes called a “context” is generated

2. Using this context, a key is derived from the session key

3. This “derived key” is used to sign the PRT cookie

4. The PRT cookie is used in Azure AD to sign in

PRT cookie signing flow

PRT with TPM

lsass TPM

Mimikatz magic with TPM

Use derived key and context to recreate PRT cookie

• If you’re admin on a device with a PRT, you can steal the PRT if it’s

not in TPM

• If it is in the TPM you can still acquire context/derived key

combinations which allow you to use the PRT without the device

• Longer version:

https://dirkjanm.io/digging-further-into-the-primary-refresh-token/

PRT as admin TL;DR

Registering devices the unofficial way

• Need to be admin on the device

• Need to dump LSASS

• PRT expires

• Device disabled = PRT disabled

TPM attack downsides

• We know how to get our own Primary Refresh Token by registering

a device.

• We know how to get an access token from a user session by using

SSO.

• How about registering a new device with an SSO token?

Combining knowledge

• Initialize SSO flow

• Request token with PRT cookie

Registering with SSO

Register device

Credits: Adapted from AADInternals by @DrAzureAd

Obtain PRT using user password

• Use PRT and session key to sign in

Sign in with PRT

• SSO token can be requested by limited user

• Access token contains MFA claim

• New device registered will also issue PRT with inherited MFA claim

• Only password (or SSO in case of federated) is required to get a

PRT

• Free MFA upgrade!

New device registration attack summary

• Upside:

• Is separate from the old device, so if old device is disabled our

PRT will still work.

• Downside:

• Requires permissions to register devices (not always allowed)

• Does not mean the device will be allowed to enroll into Intune (for

compliancy)

New device upsides/downsides

• Chrome users browsercore.exe as native component for SSO

• Replace with browsercore.py which contains PRT data

Using the rogue PRT

Using the rogue PRT

• Registering a device via SSO was reported to MSRC in December

2020

• Final fixes rolled out in September 2021

• Intermediate fixes also for specific platforms

• No longer possible to use SSO tokens for device registration

Disclosure timeline

• There appears to be a significant redesign on how the PRT is

issued and used.

• Mimikatz CloudAP dumping from lsass does not work on latest

versions (August 2021 update), likely due to changed storage of

secrets.

• More research needed to see if this also stops using secrets stored

in the TPM with admin rights.

Current status

• Registration flow:

• User A registers device using MFA

• User A is set as owner of the device in Azure AD

• Once user A logs in for first time, MFA claim is transferred

because it was used during registration and user A is the owner.

• MFA claim is “copied” to the PRT, so tokens issued via the PRT

also comply with MFA requirements.

Bonus: MFA bypass as Intune / Global admin

• MFA claim is transferred based on ownership

• As Intune admin or global admin, add extra owner to device

• Log in on fake device with only password, PRT is issued with MFA

claim without ever entering MFA for that user.

Flaw

• Reported May 2021

• After some discussion with MSRC, accepted as vulnerability in July

2021

• Fixed August 2021

• MFA claim is now no longer transferred to PRT after registration

Bonus: MFA bypass as Intune / Global admin

• SSO still breaks security in 2021

• Monitor for odd/unexpected device joins

• Limit device joining/registering as much as possible

Conclusion

• All tools in the talk are based on the ROADtools framework/library

• Open source at https://github.com/dirkjanm/ROADtools/

I have ROADtools stickers, come get some after the talk ☺

